Classification of attention deficit/hyperactivity disorder based on EEG signals using a EEG-Transformer model

Author:

He Yuchao,Wang XinORCID,Yang Zijian,Xue Lingbin,Chen Yuming,Ji Junyu,Wan FengORCID,Mukhopadhyay Subhas ChandraORCID,Men Lina,Tong Michael Chi Fai,Li Guanglin,Chen ShixiongORCID

Abstract

Abstract Objective. Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in adolescents that can seriously impair a person’s attention function, cognitive processes, and learning ability. Currently, clinicians primarily diagnose patients based on the subjective assessments of the Diagnostic and Statistical Manual of Mental Disorders-5, which can lead to delayed diagnosis of ADHD and even misdiagnosis due to low diagnostic efficiency and lack of well-trained diagnostic experts. Deep learning of electroencephalogram (EEG) signals recorded from ADHD patients could provide an objective and accurate method to assist physicians in clinical diagnosis. Approach. This paper proposes the EEG-Transformer deep learning model, which is based on the attention mechanism in the traditional Transformer model, and can perform feature extraction and signal classification processing for the characteristics of EEG signals. A comprehensive comparison was made between the proposed transformer model and three existing convolutional neural network models. Main results. The results showed that the proposed EEG-Transformer model achieved an average accuracy of 95.85% and an average AUC value of 0.9926 with the fastest convergence speed, outperforming the other three models. The function and relationship of each module of the model are studied by ablation experiments. The model with optimal performance was identified by the optimization experiment. Significance. The EEG-Transformer model proposed in this paper can be used as an auxiliary tool for clinical diagnosis of ADHD, and at the same time provides a basic model for transferable learning in the field of EEG signal classification.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzen Municipality

the National Key R&D Program of China

China Postdoctoral Science Foundation

the Science and Technology Program of Guangdong Province

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3