A Baseline Drift-Elimination Algorithm for Strain Measurement-System Signals Based on the Transformer Model

Author:

Wang Yusen12,Zhang Lei12,Qi Xue12,Yang Xiaopeng12,Tan Qiulin12ORCID

Affiliation:

1. Key Laboratory of Micro/Nano Devices and Systems, Ministry of Education, North University of China, Taiyuan 030051, China

2. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China

Abstract

Strain measurements are vital in engineering trials, testing, and scientific research. In the process of signal acquisition, baseline drift has a significant impact on the accuracy and validity of data. Traditional solutions, such as discrete wavelet transform and empirical mode decomposition, cannot be used in real-time systems. To solve this problem, this paper proposes a Transformer-based model to eliminate the drift in the signal. A self-attentive mechanism is utilized in the encoder of the model to learn the interrelationships between the components of the input signal, and captures the key features. Then, the decoder generates a corrected signal. Meanwhile, a high-precision strain acquisition system is constructed. The experiments tested the model’s ability to remove drift from simulated voltage signals with and without Gaussian noise. The results demonstrated that the transformer model excels at eliminating signal baseline drift. Additionally, the performance of the model was investigated under different temperature conditions and with different levels of force applied by the electronic universal testing machine to produce strain. The experimental results indicate that the Transformer model can largely eliminate drift in dynamic signals l and has great potential for practical applications.

Funder

Key Research and Development Plan of Shanxi Province

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3