Creation of virtual channels in the retina using synchronous and asynchronous stimulation—a modelling study

Author:

Song XiaoyuORCID,Guo TianruoORCID,Shivdasani Mohit NORCID,Dokos Socrates,Lovell Nigel H,Li Xinxin,Qiu Shirong,Li Tong,Zheng Shiwei,Li LimingORCID

Abstract

Abstract Objective. The spatial resolution of an implantable neural stimulator can be improved by creation of virtual channels (VCs). VCs are commonly achieved through synchronized stimulation of multiple electrodes. It remains unknown whether asynchronous stimulation is able to generate comparable VC performance in retinal stimulation, and how VC can be optimized by re-designing stimulation settings. This study begins with exploring the feasibility of creating VCs using synchronous and asynchronous epiretinal stimulation, and ending with predicting the possible VC performance with a thorough exploration of stimulation parameter space. Approach. A computational model of epiretinal dual-electrode stimulation is developed to simulate the neural activity of a population of retinal ganglion cells (RGCs) under both synchronous and asynchronous stimulation conditions. The interaction between the electrode and RGCs under a range of stimulation parameters are simulated. Main results. Our simulation based on direct RGC activation suggests that VCs can be created using asynchronous stimulation. Two VC performance measures: 1) linearity in the change in centroid location of activated RGC populations, and 2) consistency in the size of activated RGC populations, have comparable performance under asynchronous and synchronous stimulation with appropriately selected stimulation parameters. Significance. Our findings support the possibility of creating VCs by directly activating RGCs under synchronous and asynchronous stimulation conditions. This study establishes the fundamental capability of VC creation based on temporal interactions within the RGC population alone and does not include the effects of potential indirect activation of any surviving inner retinal network neurons. Our results provide theoretical evidence for designing next-generation retinal prosthesis with higher spatial resolution.

Funder

SJTU-UNSW Collaborative Research Seed Grant

National Natural Science Foundation of China

Australian NHMRC Project Grant

Retina Australia

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3