Simulating the impact of photoreceptor loss and inner retinal network changes on electrical activity of the retina

Author:

Ly KeithORCID,Guo TianruoORCID,Tsai David,Muralidharan Madhuvanthi,Shivdasani Mohit NORCID,Lovell Nigel H,Dokos Socrates

Abstract

Abstract Objective. A major reason for poor visual outcomes provided by existing retinal prostheses is the limited knowledge of the impact of photoreceptor loss on retinal remodelling and its subsequent impact on neural responses to electrical stimulation. Computational network models of the neural retina assist in the understanding of normal retinal function but can be also useful for investigating diseased retinal responses to electrical stimulation. Approach. We developed and validated a biophysically detailed discrete neuronal network model of the retina in the software package NEURON. The model includes rod and cone photoreceptors, ON and OFF bipolar cell pathways, amacrine and horizontal cells and finally, ON and OFF retinal ganglion cells with detailed network connectivity and neural intrinsic properties. By accurately controlling the network parameters, we simulated the impact of varying levels of degeneration on retinal electrical function. Main results. Our model was able to reproduce characteristic monophasic and biphasic oscillatory patterns seen in ON and OFF neurons during retinal degeneration (RD). Oscillatory activity occurred at 3 Hz with partial photoreceptor loss and at 6 Hz when all photoreceptor input to the retina was removed. Oscillations were found to gradually weaken, then disappear when synapses and gap junctions were destroyed in the inner retina. Without requiring any changes to intrinsic cellular properties of individual inner retinal neurons, our results suggest that changes in connectivity alone were sufficient to give rise to neural oscillations during photoreceptor degeneration, and significant network connectivity destruction in the inner retina terminated the oscillations. Significance. Our results provide a platform for further understanding physiological retinal changes with progressive photoreceptor and inner RD. Furthermore, our model can be used to guide future stimulation strategies for retinal prostheses to benefit patients at different stages of disease progression, particularly in the early and mid-stages of RD.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing the Contribution of Vertical Processing Layers of the Retina to White-Noise Electrical Stimulation Responses;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

2. The direct influence of retinal degeneration on electrical stimulation efficacy: Significant implications for retinal prostheses;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

3. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration;Sensors;2023-06-21

4. Editorial: Advances in bioelectronics and stimulation strategies for next generation neuroprosthetics;Frontiers in Neuroscience;2023-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3