Modulating individual axons and axonal populations in the peripheral nerve using transverse intrafascicular multichannel electrodes

Author:

Xie YuyangORCID,Qin PeijunORCID,Guo TianruoORCID,Al Abed AmrORCID,Lovell Nigel HORCID,Tsai DavidORCID

Abstract

Abstract Objective. A transverse intrafascicular multichannel electrode (TIME) may offer advantages over more conventional cuff electrodes including higher spatial selectivity and reduced stimulation charge requirements. However, the performance of TIME, especially in the context of non-conventional stimulation waveforms, remains relatively unexplored. As part of our overarching goal of investigating stimulation efficacy of TIME, we developed a computational toolkit that automates the creation and usage of in silico nerve models with TIME setup, which solves nerve responses using cable equations and computes extracellular potentials using finite element method. Approach. We began by implementing a flexible and scalable Python/MATLAB-based toolkit for automatically creating models of nerve stimulation in the hybrid NEURON/COMSOL ecosystems. We then developed a sciatic nerve model containing 14 fascicles with 1,170 myelinated (A-type, 30%) and unmyelinated (C-type, 70%) fibers to study fiber responses over a variety of TIME arrangements (monopolar and hexapolar) and stimulation waveforms (kilohertz stimulation and cathodic ramp modulation). Main results. Our toolkit obviates the conventional need to re-create the same nerve in two disparate modeling environments and automates bi-directional transfer of results. Our population-based simulations suggested that kilohertz stimuli provide selective activation of targeted C fibers near the stimulating electrodes but also tended to activate non-targeted A fibers further away. However, C fiber selectivity can be enhanced by hexapolar TIME arrangements that confined the spatial extent of electrical stimuli. Improved upon prior findings, we devised a high-frequency waveform that incorporates cathodic DC ramp to completely remove undesirable onset responses. Conclusion. Our toolkit allows agile, iterative design cycles involving the nerve and TIME, while minimizing the potential operator errors during complex simulation. The nerve model created by our toolkit allowed us to study and optimize the design of next-generation intrafascicular implants for improved spatial and fiber-type selectivity.

Funder

Australian National Health and Medical Research Council

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3