Assessment of antibacterial and anticancer capability of silver nanoparticles extracellularly biosynthesized using Aspergillus terreus

Author:

Kumari R Mankamna,Kumar Vikram,Kumar Manish,Pareek Nidhi,Nimesh SurendraORCID

Abstract

Abstract The present study explores biosynthesis of silver nanoparticles (AgNPs) employing extracellular extract of Aspergillus terreus ITCC 9932.15. Modulation of various variables that dictate the biosynthesis of AgNPs, suggested of optimal AgNPs synthesis using AgNO3, 1 mM at pH 8 and temperature, 35 °C. The biosynthesis of AgNPs was observed to be time dependent with incremental particle synthesis till 24 h. Various studies were undertaken to authenticate formation and characterization of AgNPs for size, crystallinity and biomolecules involved. A sharp SPR peak observed at 420 nm in the UV–vis absorption spectra validated synthesis of nanoparticles. These particles exhibited spherical morphology with size ∼25 nm and −16 mV of zeta potential. Further, the existence of proteins and other biomolecules onto the surface of AgNPs was confirmed with FTIR studies. The SAED pattern investigated by employing TEM authenticated the crystallinity of AgNPs. The AgNPs also exhibited potential antibacterial activity against Gram-negative and Gram-positive bacteria (E. coli and P. aeruginosa). In addition, remarkable anticancer activity was obtained in breast cancer cell line (MCF-7).

Publisher

IOP Publishing

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3