Fabrication of Sb2S3/Sb2Se3 heterostructure for potential resistive switching applications

Author:

Prajapat Pukhraj,Vashishtha Pargam,Goswami Preeti,Gupta GovindORCID

Abstract

Abstract The exponential growth of large data and the widespread adoption of the Internet of Things (IoT) have created significant challenges for traditional Von Neumann computers. These challenges include complex hardware, high energy consumption, and slow memory access time. Researchers are investigating novel materials and device architectures to address these issues by reducing energy consumption, improving performance, and enabling compact designs. A new study has successfully engineered a heterostructure that integrates Sb2Se3 and Sb2S3, resulting in improved electrical properties. This has generated significant interest in its potential applications in resistive switching. In this study, we have demonstrated the fabrication of a device based on Sb2S3/Sb2Se3 heterostructure that exhibits resistive switching behavior. The device has different resistance states that can be switched between high and low resistance levels when exposed to an external bias (−1 V to 0 V to 1 V). It also has good non-volatile memory characteristics, including low power consumption, high resistance ratio (∼102), and reliable endurance (∼103). The device enables faster data processing, reduces energy consumption, and streamlines hardware designs, contributing to computing advancements amidst modern challenges. This approach can revolutionize resistive switching devices, leading to more efficient computing solutions for big data processing and IoT technologies.

Funder

National Physical Laboratory

CSIR

Publisher

IOP Publishing

Subject

Polymers and Plastics,Materials Science (miscellaneous),Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3