An optoelectronic heterostructure for neuromorphic computing: CdS/V3O5

Author:

Adda C.1ORCID,Navarro H.1ORCID,Kaur J.23,Lee M.-H.1ORCID,Chen C.2,Rozenberg M.4ORCID,Ong S. P.2,Schuller Ivan K.1

Affiliation:

1. Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093, USA

2. NanoEngineering Department, University of California San Diego, La Jolla, California 92093, USA

3. Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, USA

4. Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France

Abstract

Nonvolatile resistive switching is one of the key phenomena for emerging applications in optoelectronics and neuromorphic computing. In most of the cases, an electric field is applied to a two terminal dielectric material device and leads to the formation of a low resistance filament due to ion migration. However, the stochastic nature of the ion migration can be an impediment for the device robustness and controllability, with uncontrolled variations of high and low resistance states or threshold voltages. Here, we report an optically induced resistive switching based on a CdS/V3O5 heterostructure which can overcome this issue. V3O5 is known to have a second order insulator to metal transition around Tc ≈ 415 K, with an electrically induced threshold switching at room temperature. Upon illumination, the direct transfer of the photoinduced carriers from the CdS into V3O5 produces a nonvolatile resistive switching at room temperature. The initial high resistance can be recovered by reaching the high temperature metallic phase, i.e., temperatures above Tc. Interestingly, this resistive switching becomes volatile around the Tc. By locally manipulating the volatile and nonvolatile resistive switching using electric field and light, this system is a promising platform for hardware based neuromorphic computing implementations.

Funder

Air Force Office of Scientific Research

Energy Frontier Research Centers

National Energy Research Scientific Computing Center

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3