Ensemble effects on the reconstruction of attosecond pulses and photoemission time delays

Author:

Vismarra FORCID,Borrego-Varillas RORCID,Wu Y,Mocci D,Nisoli MORCID,Lucchini MORCID

Abstract

Abstract A crucial prerequisite for a detailed interpretation of the experimental results obtained with the most common attosecond spectroscopic techniques is a careful characterization of the attosecond extreme-ultraviolet (XUV) and femtosecond infrared (IR) pulses used in the measurements. A commonly adopted approach is based on the measurement of the spectra of the photoelectrons produced by the interaction of the attosecond pulses with a noble gas in the presence of a delayed IR pulse. Feeding the resulting spectrogram to reconstruction algorithms, it is then possible to retrieve the temporal properties of the XUV and IR pulses. To date, all reconstruction techniques are based on the assumption that the spectrogram is produced by the interaction of a single atom with a two-color (XUV-IR) field. In this work, we numerically investigate the effect of the actual XUV and IR beam spatial distributions, and we analyze their impact on the retrieval of the temporal characteristics of the XUV and IR pulses and on the determination of the photoemission time delays. We show that the impact of the ensemble effects can be severe, leading to notable variation of the photoelectron spectrograms, depending on the ratio between the XUV and IR beam spot sizes and on the IR peak intensity. We demonstrate that the photoemission time delay can be retrieved with great accuracy even in the presence of large deformations of the photoelectron spectrograms by employing suitable reconstruction procedures.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

H2020 European Research Council

Fondazione Cariplo

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3