Versatile and robust reconstruction of extreme-ultraviolet pulses down to the attosecond regime

Author:

Dolso Gian Luca1ORCID,Inzani Giacomo1ORCID,Di Palo Nicola1ORCID,Moio Bruno1ORCID,Medeghini Fabio1,Borrego-Varillas Rocío2ORCID,Nisoli Mauro12ORCID,Lucchini Matteo12ORCID

Affiliation:

1. Department of Physics, Politecnico di Milano 1 , 20133 Milano, Italy

2. Institute for Photonics and Nanotechnologies, IFN-CNR 2 , 20133 Milano, Italy

Abstract

A reliable and complete temporal characterization of ultrashort pulses is a crucial requisite for the correct interpretation of time-resolved experiments. This task is particularly challenging in the extreme-ultraviolet (XUV) spectral region, where usually different approaches are employed depending on the exact temporal structure of the pulses. Here we propose and validate against both simulated and experimental data a novel approach for the reconstruction of ultrashort XUV pulses produced by high-order harmonic generation in gases for three different conditions: isolated attosecond pulses, attosecond pulse trains, and few-femtosecond pulses obtained by spectral selection of single harmonics. The core of the method, named simplified trace reconstruction in the perturbative regime (STRIPE), is a novel mathematical description providing a simplified picture of the two-color photoionization process. This new approach is capable of accurately retrieving the temporal characteristics of the XUV pulses with notably reduced computational costs compared to other currently used reconstruction techniques. Direct comparison to standard approaches proves it to be superior in terms of flexibility, reliability, and robustness against noise and acquisition artifacts, making STRIPE a promising tool for pulse characterization.

Funder

HORIZON EUROPE European Research Council

Laserlab-Europe

Ministero dell’Istruzione, dell’Università e della Ricerca

Fondazione Cariplo

POLIMI SOE

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3