UV-induced dissociation of CH2BrI probed by intense femtosecond XUV pulses

Author:

Köckert Hansjochen,Lee Jason W LORCID,Allum Felix,Amini KasraORCID,Bari SadiaORCID,Bomme Cédric,Brauße Felix,Brouard MarkORCID,Burt MichaelORCID,Cunha de Miranda Barbara,Düsterer StefanORCID,Eng-Johnsson PerORCID,Erk BenjaminORCID,Géléoc Marie,Geneaux RomainORCID,Gentleman Alexander S,Guillemin Renaud,Goldsztejn Gildas,Holland David M PORCID,Ismail Iyas,Journel LoïcORCID,Kierspel ThomasORCID,Küpper JochenORCID,Lahl JanORCID,Mackenzie Stuart RORCID,Maclot SylvainORCID,Manschwetus BastianORCID,Mereshchenko Andrey S,Mullins TerenceORCID,Olshin Pavel K,Palaudoux Jérôme,Penent FrancisORCID,Piancastelli Maria NovellaORCID,Rompotis Dimitrios,Rouzée Arnaud,Ruchon ThierryORCID,Rudenko Artem,Schirmel Nora,Simon MarcORCID,Techert Simone,Travnikova OksanaORCID,Trippel Sebastian,Vallance ClaireORCID,Wang Enliang,Wiese JossORCID,Ziaee Farzaneh,Marchenko TatianaORCID,Rolles DanielORCID,Boll RebeccaORCID

Abstract

Abstract The ultraviolet (UV)-induced dissociation and photofragmentation of gas-phase CH2BrI molecules induced by intense femtosecond extreme ultraviolet (XUV) pulses at three different photon energies are studied by multi-mass ion imaging. Using a UV-pump–XUV-probe scheme, charge transfer between highly charged iodine ions and neutral CH2Br radicals produced by C–I bond cleavage is investigated. In earlier charge-transfer studies, the center of mass of the molecules was located along the axis of the bond cleaved by the pump pulse. In the present case of CH2BrI, this is not the case, thus inducing a rotation of the fragment. We discuss the influence of the rotation on the charge transfer process using a classical over-the-barrier model. Our modeling suggests that, despite the fact that the dissociation is slower due to the rotational excitation, the critical interatomic distance for charge transfer is reached faster. Furthermore, we suggest that charge transfer during molecular fragmentation may be modulated in a complex way.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3