Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales

Author:

Wang Jinshi,Fang FengzhouORCID,An Haojie,Wu Shan,Qi Huimin,Cai Yuexuan,Guo Guanyu

Abstract

Abstract With the rapid development in advanced industries, such as microelectronics and optics sectors, the functional feature size of devises/components has been decreasing from micro to nanometric, and even ACS for higher performance, smaller volume and lower energy consumption. By this time, a great many quantum structures are proposed, with not only an extreme scale of several or even single atom, but also a nearly ideal lattice structure with no material defect. It is almost no doubt that such structures play critical role in the next generation products, which shows an urgent demand for the ACSM. Laser machining is one of the most important approaches widely used in engineering and scientific research. It is high-efficient and applicable for most kinds of materials. Moreover, the processing scale covers a huge range from millimeters to nanometers, and has already touched the atomic level. Laser–material interaction mechanism, as the foundation of laser machining, determines the machining accuracy and surface quality. It becomes much more sophisticated and dominant with a decrease in processing scale, which is systematically reviewed in this article. In general, the mechanisms of laser-induced material removal are classified into ablation, CE and atomic desorption, with a decrease in the scale from above microns to angstroms. The effects of processing parameters on both fundamental material response and machined surface quality are discussed, as well as theoretical methods to simulate and understand the underlying mechanisms. Examples at nanometric to atomic scale are provided, which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3