Scanning probe lithography on calixarene towards single-digit nanometer fabrication

Author:

Kaestner Marcus,Rangelow Ivo W

Abstract

Abstract Cost effective patterning based on scanning probe nanolithography (SPL) has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications. One of the fundamental advantages of SPL is its capability for patterning and imaging employing the same probe. This is achieved with self-sensing and self-actuating cantilevers, also known as ‘active’ cantilevers. Here we used active cantilevers to demonstrate a novel path towards single digit nanoscale patterning by employing a low energy (<100 eV) electron exposure to thin films of molecular resist. By tuning the electron energies to the lithographically relevant chemical resist transformations, the interaction volumes can be highly localized. This method allows for greater control over spatially confined lithography and enhances sensitivity. We found that at low electron energies, the exposure in ambient conditions required approximately 10 electrons per single calixarene molecule to induce a crosslinking event. The sensitivity was 80-times greater than a classical electron beam exposure at 30 keV. By operating the electro-exposure process in ambient conditions a novel lithographic reaction scheme based on a direct ablation of resist material (positive tone) is presented.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3