Simplified top-down fabrication of sub-micron silicon nanowires

Author:

Zare Pakzad SinaORCID,Akinci SeckinORCID,Karimzadehkhouei MehrdadORCID,Alaca B ErdemORCID

Abstract

Abstract Silicon nanowires are among the most promising nanotechnology building blocks in innovative devices with numerous applications as nanoelectromechanical systems. Downscaling the physical size of these devices and optimization of material functionalities by engineering their structure are two promising strategies for further enhancement of their performance for integrated circuits and future-generation sensors and actuators. Integration of silicon nanowires as transduction elements for inertial sensor applications is one prominent example for an intelligent combination of such building blocks for multiple functionalities within a single sensor. Currently, the efforts in this field are marred by the lack of batch fabrication techniques compatible with semiconductor manufacturing. Development of new fabrication techniques for such one-dimensional structures will eliminate the drawbacks associated with assembly issues. The current study aims to explore the limits of batch fabrication for a single nanowire within a thick Si layer. The objective of the current work goes beyond the state of the art with significant improvements to the recent viable approach on the monolithic fabrication of nanowires, which was based on a conformal side-wall coating for the protection of the nanoscale silicon line followed by deep etch of the substrate transforming the protected layer into a silicon nanowire. The newly developed fabrication approach eliminates side wall protection and thereby reduces both process complexity and process temperature. The technique yields promising results with possible improvements for future micro and nanofabrication processes.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3