Deformation and removal of semiconductor and laser single crystals at extremely small scales

Author:

Wu YueqinORCID,Mu Dekui,Huang Han

Abstract

Abstract Semiconductor and laser single crystals are usually brittle and hard, which need to be ground to have satisfactory surface integrity and dimensional precision prior to their applications. Improvement of the surface integrity of a ground crystal can shorten the time of a subsequent polishing process, thus reducing the manufacturing cost. The development of cost-effective grinding technologies for those crystals requires an in-depth understanding of their deformation and removal mechanisms. As a result, a great deal of research efforts were directed towards studying this topic in the past two or three decades. In this review, we aimed to summarize the deformation and removal characteristics of representative semiconductor and laser single crystals in accordance with the scale of mechanical loading, especially at extremely small scales. Their removal mechanisms were critically examined based on the evidence obtained from high-resolution TEM analyses. The relationships between machining conditions and removal behaviors were discussed to provide a guidance for further advancing of the grinding technologies for those crystals.

Funder

Australia Research Council

Scientific Research Funds of Huaqiao University

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Reference169 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3