Multiphase-field modeling of temperature-driven intermetallic compound evolution in an Al–Mg system for application to solid-state joining processes

Author:

Raza Syed HasanORCID,Klusemann BenjaminORCID

Abstract

Abstract Solid-state joining of dissimilar materials results typically in the formation of intermetallic compounds at the weld interface, which strongly determines the resulting mechanical properties. To tailor the joint strength, understanding of the formation of the intermetallic compound and their driving mechanisms is crucial. In this study, the evolution of temperature-driven Al3Mg2 and Al12Mg17 intermetallic compounds in an Al–Mg system for application to solid-state joining processes via a multiphase-field approach is numerically investigated. To this end, the CALPHAD approach to obtain the thermodynamic parameters of the relevant phases is used in conjunction with the multiphase-field model. The simulation results are qualitatively compared with experimental results in the literature in terms of thickness and morphology of intermetallic grains, exhibiting a reasonable agreement. The influence of grain boundary diffusion and interface energy on the morphology and kinetics of the intermetallic compound grains is investigated in detail with the established multiphase-field model.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3