Determination of thermal conductivity of eutectic Al–Cu compounds utilizing experiments, molecular dynamics simulations and machine learning

Author:

Nazarahari AORCID,Fromm A CORCID,Ozdemir H CORCID,Klose C,Maier H JORCID,Canadinc DORCID

Abstract

Abstract In this study, the thermal conductivity ( κ ) of Al–Cu eutectics were investigated by experimental and computational methods to shed light on the role of these compounds in thermal properties of Al–Cu connections in compound casting. Specifically, the nonequilibrium molecular dynamics (MD) method was utilized to simulate the lattice thermal conductivity ( κ l ) of six compositions of Al–Cu with 5–30 at.% Cu. To extend the results of the MD simulations to bulk materials, instead of using conventional linear extrapolation methods, a machine learning approach was developed for the dataset acquired from the MD simulations. The bootstrapping approach was utilized to find the most suitable method among the support vector machine (SVM) with polynomial and radial basis function (RBF) kernels and the random forest method. The results showed that the SVM model with RBF kernel performed the best, and thus was used to predict the bulk κ l . Subsequently, the chosen compositions were produced by induction casting and their electrical conductivities were measured via eddy current method for calculating the electronic contribution of κ using the Wiedemann–Franz law. Finally, the actual κ of the alloys were measured using the xenon flash method and the results were compared with the computational values. It was shown that the MD method is capable of successfully simulating the thermal conductivity of this system. In addition, the experimental results demonstrated that the κ of Al–Cu eutectics decreases almost linearly with formation of the Al2Cu phase due to increase in the Cu content. Overall, the current findings can be used to enhance the κ of cooling devices made via Al–Cu compound casting.

Funder

DFG, German Research Foundation

Alexander von Humboldt Foundation

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3