Molecular dynamics simulations and experimental studies on low-temperature growth of GaN

Author:

Li XiangORCID,Luo Yi,Wang Lai,Wang Jian,Hao Zhibiao,Sun Changzheng,Han Yanjun,Xiong Bing,Li Hongtao

Abstract

Abstract Growth mechanisms of (0001) wurtzite GaN films at low temperature are investigated by molecular dynamics simulations and experiments. The crystallization properties of GaN films deteriorate dramatically at low temperature due to the limited energy available for atomic surface migration and incorporation into the perfect lattice sites. In our simulation, growth interruption stage is periodically introduced and the as-deposited GaN films are treated with energy-carrying argon ions at this stage. The surface atoms located at the weak binding sites can acquire energy from the argon ions for secondary migration and incorporation into the perfect lattice sites. As a result, the crystallization properties of GaN films are significantly improved. GaN films are experimentally grown on sputtered AlN/sapphire substrates at 600 °C via inductively coupled plasma metal organic chemical vapor deposition along with periodic argon plasma treatment. The as-deposited film acquires energy from the plasma, leading to significant improvement of the crystalline properties. The surface morphology of the GaN film demonstrates a noticeable smoothing effect, with an evident increase in grain size from submicron to micron level. Additionally, GaN film with the optimized surface morphology exhibits high c-axis and in-plane orientations, and the full width half maximums of (002) and (102) x-ray diffraction rocking curves are 0.25° and 0.32°, respectively. These results provide effective guidance for the growth of GaN films at low temperature.

Funder

National Key Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3