Investigation on a novel SiC Schottky barrier diode hydrogen sensor with trench-insulator structure

Author:

Qi YonglanORCID,Lai Kaiyuan,Lv Haojie,Qi Bao,Zhao Yuheng

Abstract

Abstract A novel SiC Schottky barrier diode (SBD) hydrogen gas sensor with trench-insulator structure was proposed in this paper. A physical model is built for this hydrogen sensor based on 4H-SiC SBD thermionic emission theory, tunneling effect of carriers, adsorption/desorption principle of hydrogen and modulation effects of Schottky barrier height. Use Silvaco TCAD, the semiconductor simulation software, to analyze SBDs with trench-insulator layer and to compute current-voltage characteristics at different temperature, hydrogen concentration and trench width under forward bias. The temperature and hydrogen concentration affect the I–V characteristics of the devices by changing the Schottky barrier height. Compared with normal metal-silicon carbide and metal-insulator-silicon carbide devices at 573 K in terms of on-off voltage, current resolution, response speed, and stability, the trench-insulator hydrogen sensor showed good performance. Relationship between device characteristics and trench width was researched using the above model. Trench width has an opposite effect on sensor resolution and sensitivity.

Funder

Science and Technology Development Project of Henan Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. A new 4H-SiC hydrogen sensor with oxide ramp termination;Pascu;Mater. Sci. Semicond. Process.,2016

2. Comprehensive study on electrical and hydrogen gas sensing characteristics of Pt/ZnO nanocrystalline thin film-based Schottky diodes grown on n-Si substrate using RF sputtering;Rajan;IEEE Trans. Nanotechnol.,2016

3. High temperature field effect hydrogen and hydrocarbon gas sensors based on SiC MOS devices;Trinchi;Sens. Actuators B Chem.,2008

4. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire;Yan;Explosion and Shock Waves,2019

5. The accident simulation and consequence analysis of the hydrogen refueling station leakage;Yang;Fire Technol.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3