Geopolymerization: a promising technique for membrane synthesis

Author:

Sadiq Muhammad,Naveed AmirORCID,Arif MuhammadORCID,Hassan Saima,Afridi Shaista,Asif Muhammad,Sultana SabeehORCID,Amin Noor-ulORCID,Younas Mohammad,Khan Muhammad Naeem,Jiang HeqingORCID,Gul Saeed

Abstract

Abstract Ceramic membranes are considered superior over their polymeric counterparts for applications at high temperature, pressure, and in aggressive environments with additional advantages of cleaning at high temperature. Preparation of porous ceramic membrane is expensive because the ceramic materials cannot be processed in a liquid state as polymers. Ceramic membrane synthesis involved solid powder preparation, consolidation, suspension formation, calcination, and sintering temperature which makes its synthesis very expensive. Geopolymerization is a heterogeneous reaction of aluminosilicate materials and chemical activators to form a three-dimensional structure having high mechanical strength without sintering. The overall percent energy and cost-saving of geopolymeric membranes were compared with conventional ceramic membranes. Recently, the geopolymerization technique has been used for membrane synthesis to replace conventional ceramic membrane synthesis. The objective of this review article is to discuss the potential opportunities and challenges in the synthesis and application of geopolymeric membranes.

Funder

Pakistan Academy of Sciences

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3