The Capacity of Alkali‐Activated Industrial Wastes in Novel Sustainable Ceramic Membranes

Author:

Shiwa Sina1ORCID,Khosravi Arash1ORCID,Mohammadi Farzaneh1,Abbasi Mohsen1ORCID,Sillanpää Mika23ORCID

Affiliation:

1. Sustainable Membrane Technology Research Group (SMTRG) Chemical Engineering Department Persian Gulf University P.O. Box 75169‐13817 Bushehr Iran

2. Department of Chemical Engineering School of Mining, Metallurgy and Chemical Engineering University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa

3. Department of Applied Physics Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia

Abstract

AbstractNovel ceramic membranes present unquestionable potential in wastewater treatment among the emerging technologies, while a few challenges such as cost, energy consumption, durability, and resistance in harsh mediums still limit their commercialization. Here, we review the capability of available industrial aluminosilicate waste materials in the fabrication of novel ceramic membranes using green and economical alkali‐activation synthesis method. The different sources of alkali‐activated aluminosilicate wastes including ashes, mining wastes, glass and ceramic wastes, slags, construction wastes, industrial byproducts, and agricultural wastes are introduced and the chemistry of geopolymers is reviewed. In this review, the major points are the following. 1) The alkali‐activated structures present reasonable chemical, frost, carbonation, and mechanical resistance as well as the ability to immobilize the toxic materials. 2) The synthesis aspects of porous and nonporous alkali‐activated ceramic membranes are explored by characterization methods. Furthermore, the durability analysis in harsh environments reveals that alkali‐activated ceramic membranes possess high resistance against acidic, alkaline, and other antifouling chemical washing methods. In summary, it is demonstrated that the studied membranes have an undeniable capability in the separation of organic solvents in the pervaporation process as well as toxic material removal from water with high ion‐exchange capacity.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3