Effect of annealing temperature on the morphology, structure, and optical properties of nanostructured SnO(x) films

Author:

Timofeev Vyacheslav AORCID,Mashanov Vladimir IORCID,Nikiforov Alexandr I,Azarov Ivan A,Loshkarev Ivan D,Korolkov Ilya V,Gavrilova Tatyana A,Yesin M Yu,Chetyrin Igor A

Abstract

Abstract Nanostructured SnO(x) films were obtained by molecular beam epitaxy (MBE). The morphology, structure, and optical properties of obtained films annealed in the temperature range of 200 °C–1000 °C were studied. The reflection high-energy electron diffraction during the film deposition by the MBE method and the x-ray phase analysis showed that the initial films are in the polycrystalline phase. A single orthorhombic SnO2 phase was obtained for the first time after annealing the SnO(x) film in the air at a temperature of about 500 °C. The sharp change in the optical constants near the temperature of 500 °C was established using ellipsometry. The pronounced absorption edge appears in the short-wave region at temperatures above 500 °C and it disappears at lower temperatures. The film thickness changed non-monotonically during the annealing in the air. At first, it grows from 45 nm to 65 nm (active oxidation to 500 °C), and then (above 600 °C) it begins to decrease. The annealing at temperatures of 500 °C–1000 °C leads to the film compaction, since the film thickness decreases to 50 nm, but the refractive index increases by 10%–15%. Optical constants track the progress of film phase and morphological changes.

Funder

Russian Foundation for Basic Research

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3