Abstract
Abstract
Nanostructured SnO(x) films were obtained by molecular beam epitaxy (MBE). The morphology, structure, and optical properties of obtained films annealed in the temperature range of 200 °C–1000 °C were studied. The reflection high-energy electron diffraction during the film deposition by the MBE method and the x-ray phase analysis showed that the initial films are in the polycrystalline phase. A single orthorhombic SnO2 phase was obtained for the first time after annealing the SnO(x) film in the air at a temperature of about 500 °C. The sharp change in the optical constants near the temperature of 500 °C was established using ellipsometry. The pronounced absorption edge appears in the short-wave region at temperatures above 500 °C and it disappears at lower temperatures. The film thickness changed non-monotonically during the annealing in the air. At first, it grows from 45 nm to 65 nm (active oxidation to 500 °C), and then (above 600 °C) it begins to decrease. The annealing at temperatures of 500 °C–1000 °C leads to the film compaction, since the film thickness decreases to 50 nm, but the refractive index increases by 10%–15%. Optical constants track the progress of film phase and morphological changes.
Funder
Russian Foundation for Basic Research
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献