Comparison of priori and posteriori approach of multi-objective optimization for WEDM on Ti6Al4V alloy

Author:

Jain ShubhamORCID,Parashar Vishal

Abstract

Abstract Titanium alloys are known to have some excellent properties, such as good biocompatibility, good fatigue resistance and high strength to weight ratio. Due to these properties, Ti6Al4V alloy is widely used in the biomedical field, aerospace and automobile industries. In this article, pulse on-time (TON), pulse off time (TOFF), and servo voltage (SV) were selected as process parameters for wire electric discharge machining (WEDM) on Ti6Al4V alloy. The material removal rate (MRR) and surface roughness (SR) were determined as responses. MRR and SR have been equated by a central composite design (CCD: a response surface method technique). Then multi-objective Artificial Bee Colony optimization (MO-ABC) with Gray relational analysis (GRA) was selected as a priori approach for multi-objective optimization. Also, a multi-objective grasshopper optimization algorithm (MO-GOA) has been chosen as a posterior approach for optimization. These two algorithms have been tested on various iterations and populations. Based on the elapsed time, it has been found that the priori approach of multi-objective optimization is better than the posterior approach of multi-objective optimization. When comparing these algorithms based on the results, it is obtained that the posterior approach gives a better combination of multiple results. The major outcome of the research is that the priori method is quick, while the posterior approach produces many promising solutions.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3