Fabrication and Tribological Properties of Diamond-like Carbon Film with Cr Doping by High-Power Impulse Magnetron Sputtering

Author:

Liu Shuai1,Zhuang Wenjian1,Ding Jicheng12,Liu Yuan1,Yu Weibo3,Yang Ying1,Liu Xingguang1,Yuan Jing4,Zheng Jun1

Affiliation:

1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243002, China

2. China International Science and Technology Cooperation Base on Intelligent Equipment Manufacturing in Special Service Environment, Anhui University of Technology, Maanshan 243002, China

3. Changzhou Huachuang Aviation Technology Co., Ltd., No. 539 Xiacheng South Road, Wujin District, Changzhou 213161, China

4. Anhui HERO Electronic Sci & Tec Co., Ltd., No. 129 West Section of Cuihu Fifth Road, Economic and Technological Developent Zone, Tongling 244002, China

Abstract

The present study aims to investigate the advantages of diamond-like carbon (DLC) films in reducing friction and lubrication to address issues such as the low surface hardness, high friction coefficients, and poor wear resistance of titanium alloys. Cr-doped DLC films were deposited by high-power impulse magnetron sputtering (HiPIMS) in an atmosphere of a gas mixture of Ar and C2H2. The energy of the deposited particles was controlled by adjusting the target powers, and four sets of film samples with different powers (4 kW, 8 kW, 12 kW, and 16 kW) were fabricated. The results showed that with an increase in target power, the Cr content increased from 3.73 at. % to 22.65 at. %; meanwhile, the microstructure of the film evolved from an amorphous feature to a nanocomposite structure, with carbide embedded in an amorphous carbon matrix. The sp2-C bond content was also increased in films, suggesting an intensification of the film’s graphitization. The hardness of films exhibited a trend of initially increasing and then decreasing, reaching the maximum value at 12 kW. The friction coefficient and wear rate of films showed a reverse trend compared to hardness variation, namely initially decreasing and then increasing. The friction coefficient reached a minimum value of 0.14, and the wear rate was 2.50 × 10−7 (mm3)/(N·m), at 8 kW. The abrasive wear was the primary wear mechanism for films deposited at a higher target power. Therefore, by adjusting the target power parameter, it is possible to control the content of the metal and sp2/sp3 bonds in metal-doped DLC films, thereby regulating the mechanical and tribological properties of the films and providing an effective approach for addressing surface issues in titanium alloys.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Anhui Higher Education Institutions of China

Open Project of China International Science and Technology Cooperation Base on Intelligent Equipment Manufacturing in Special Service Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3