Silicon micromachining with nanometer-thin boron masking and membrane material

Author:

Liu XingyuORCID,Italiano Joe,Scott Robin,Nanver Lis KORCID

Abstract

Abstract Chemical-vapor-deposition (CVD) conditions were investigated for enabling the growth of pure boron (PureB) on Si with low stress and at as low as possible temperature. The application of the B as masking material for Si wet etching by tetramethyl ammonium hydroxide (TMAH) and as membrane material was demonstrated for B deposition temperatures down to 300 °C. Layer thickness in the range 4 nm to 40 nm was applied. In a Si epitaxy reactor system a close to zero-stress condition was found at ∼600 °C, and in an atomic-layer deposition system operated in CVD mode, loosely-bonded 300 °C layers without measurable stress were realized. The compactness of the layers was evaluated by monitoring the etch rate in standard aluminum wet etchant and by observing electron transmissivity, confirming a clear relationship between deposition conditions, compactness and stress.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3