Repairing slight damages on monocrystalline silicon surface by thermal annealing

Author:

Feng Chengqiang,Wu Lei,Chen Peng,Yang Tingting,Yu BingjunORCID,Qian Linmao

Abstract

Abstract The damages on silicon substrate, usually caused by machining and polishing processes, inevitably degrade the mechanical and electrical properties of the devices involved. Defect-free silicon substrates are essential with the miniaturization of integrated circuits to tens of nanometers, and repairing the damages is significant for manufacturing excellent devices. In this study, the slight damages, i.e. protrusive hillocks resulting from nanoscratching on monocrystalline silicon surface, was thermally annealed in vacuum for repairing, and groove-shaped scratches were also annealed for comparative study. In-situ topographies of the hillocks before and after the annealing were detected with an atomic force microscope (AFM), and then compared for finding the optimum annealing temperature. It is shown that the protrusive hillocks can be well repaired than the groove-shaped scratches. The repairing with annealing process was further verified by conductive AFM detection and selective etching in hydrofluoric acid solution. Raman spectroscopy detection was employed to clarify the annealing-dependent recovering mechanism of the damages on silicon surface, and it is suggested that structural transformation plays an important role in the repairing. In addition, the annealing of the hillocks on single-crystal quartz surface confirmed the structural recovery rather than the oxidation during annealing.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3