Abstract
Purpose
This paper aims to quickly obtain an accurate and complete dense three-dimensional map of indoor environment with lower cost, which can be directly used in navigation.
Design/methodology/approach
This paper proposes an improved ORB-SLAM2 dense map optimization algorithm. This algorithm consists of three parts: ORB feature extraction based on improved FAST-12, feature point extraction with progressive sample consensus (PROSAC) and the dense ORB-SLAM2 algorithm for mapping. Here, the dense ORB-SLAM2 algorithm adds LoopClose optimization thread and dense point cloud map and octree map construction thread. The dense map is computationally expensive and occupies a large amount of memory. Therefore, the proposed method takes higher efficiency, voxel filtering can reduce the memory while ensuring the density of the map and then use the octree format to store the map to further reduce memory.
Findings
The improved ORB-SLAM2 algorithm is compared with the original ORB-SLAM2 algorithm, and the experimental results show that the map through improved ORB-SLAM2 can be directly used in navigation process with higher accuracy, shorter tracking time and smaller memory.
Originality/value
The improved ORB-SLAM2 algorithm can obtain a dense environment map, which ensures the integrity of data. The comparisons of FAST-12 and improved FAST-12, RANSAC and PROSAC prove that the improved FAST-12 and PROSAC both make the feature point extraction process faster and more accurate. Voxel filter helps to take small storage memory and low computation cost, and octree map construction on the dense map can be directly used in navigation.
Subject
Industrial and Manufacturing Engineering,Control and Systems Engineering
Reference26 articles.
1. A review of v-slam,2018
2. Matching with PROSAC-progressive sample consensus;IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005
3. 3-D mapping with an RGB-D camera;IEEE Transactions on Robotics,2014
4. Visual simultaneous localization and mapping: a survey;Artificial Intelligence Review,2015
5. Integrating global and local image features for enhanced loop closure detection in RGB-D SLAM systems;The Visual Computer,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献