Geometric Constraint-Based and Improved YOLOv5 Semantic SLAM for Dynamic Scenes

Author:

Zhang Ruidong1ORCID,Zhang Xinguang1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

When using deep learning networks for dynamic feature rejection in SLAM systems, problems such as a priori static object motion leading to disturbed build quality and accuracy and slow system runtime are prone to occur. In this paper, based on the ORB-SLAM2 system, we propose a method based on improved YOLOv5 networks combined with geometric constraint methods for SLAM map building in dynamic environments. First, this paper uses ShuffleNetV2 to lighten the YOLOv5 network, which increases the improved network’s operation speed without reducing the accuracy. At the same time, a pyramidal scene parsing network segmentation head is added to the head part of the YOLOv5 network to achieve semantic extraction in the environment, so that the improved YOLOv5 network has both target detection and semantic segmentation functions. In order to eliminate the objects with low dynamic features in the environment, this paper adopts the method of geometric constraints to extract and eliminate the dynamic features of the low dynamic objects. By combining the improved YOLOv5 network with the geometric constraint method, the robustness of the system is improved and the interference of dynamic targets in the construction of the SLAM system map is eliminated. The test results on the TUM dataset show that, when constructing a map in a dynamic environment, compared with the traditional ORB-SLAM2 algorithm, the accuracy of map construction in a dynamic environment is significantly improved. The absolute trajectory error is reduced by 97.7% compared with ORB-SLAM2, and the relative position error is reduced by 59.7% compared with ORB-SLAM2. Compared with DynaSLAM for dynamic scenes of the same type, the accuracy of map construction is slightly improved, but the maximum increase in keyframe processing time is 94.7%.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3