Real-time control of bilateral teleoperation system with adaptive computed torque method

Author:

Abut Tayfun,Soyguder Servet

Abstract

Purpose This paper aims to use the adaptive computed torque control (ACTC) method to eliminate the kinematic and dynamic uncertainties of master and slave robots and for the control of the system in the presence of forces originating from human and environment interaction. Design/methodology/approach In case of uncertainties in the robot parameters that are utilized in teleoperation studies and when the environment where interactions take place is not known and when there is a time delay, very serious problems take place in system performance. An adaptation rule was created to update uncertain parameters. In addition to this, disturbance observer was designed for slave robot. Lyapunov function was used to analyze the system’s position tracking and stability. A visual interface was designed to ensure that the movements of the master robot provided a visual feedback to the user. Findings In this study, a visual interface was created, and position and velocity control was achieved utilizing teleoperation; the system’s position tracking and stability were analyzed using the Lyapunov method; a simulation was applied in a real-time environment, and the performance results were analyzed. Originality/value This study consisted of both simulation and real-time studies. The teleoperation system, which was created in a laboratory environment, consisted of six-degree-of-freedom (DOF) master robots, six-DOF industrial robots and six-DOF virtual robots.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference34 articles.

1. Motion control in virtual reality based teleoperation system,2015

2. Alti serbestlik dereceli haptik robotun performans analizi,2014

3. Gerçek zamanlı altı serbestlik dereceli haptik bir robot i̇le sanal robotun teleoperasyonu, uluslararası katılımlı 17,2015

4. Designing virtual interfaces for teleoperated robots,1998

5. Feedback control for robotic manipulator with an uncertain Jacobian matrix;Journal of Robotic Systems,1999

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3