Domain-specific market segmentation using a latent class mixture modelling approach and wine-related lifestyle (WRL) algorithm

Author:

Bruwer Johan,Li Elton

Abstract

Purpose Since the publication of Van Raaij and Verhallen’s seminal work in European Journal of Marketing in 1994, identifying the domain-specific market segmentation approach as one of the most feasible for segmenting markets, there has been surprisingly limited development in this field, with the food domain as the only exception. This study aims to develop a methodological approach using latent class mixture modelling as contribution in the domain-specific market segmentation field. Design/methodology/approach This study captures the AIO lifestyle perspective using a domain-specific 80-item algorithm which has the wine (product) domain as its focus. A sample size of 811 consumers is used from data collected by means of the CATI approach. Findings The authors use four criteria for model selection: comparison of the Bayesian information criterion (BIC) statistic, comparison of classification error, verification of the interpretation of the derived segments and, finally, use of the conditional bootstrap procedure to test whether the selected model provides a significant improvement over the previous model. The five-segment model option yields a minimum BIC, the classification error measure is minimal and is easier to interpret than the other models. Segment descriptions for the five identified lifestyle-based segments are developed. Research limitations/implications Segmentation by traditional k-means clustering has proven to be less useful than the more innovative alternative of mixture regression modelling; therefore, the authors identify segments in the market on the basis of individuals’ domain-specific lifestyle characteristics using a latent class mixture modelling approach. Practical implications Following the attainment of a clear and robust market segmentation structure, the simultaneous analysis of the lifestyles, demographics and behaviours of consumers as nexus of the domain-specific segmentation approach, provides rich and valid information accurately informing the market segment descriptions. Originality/value The authors make a substantive contribution by developing a methodological approach using latent class mixture modelling; the first of its kind in the area of domain-specific segmentation. Next, they use the discriminant and/or predictive validity of the 80-scale items to predict cluster membership using the WRL algorithm. Finally, the authors describe the identified market segments in detail and outline the practical implications.

Publisher

Emerald

Subject

Marketing

Reference50 articles.

1. Benefit segmentation: a potentially useful technique of segmenting and targeting older consumers;International Journal of Market Research,2003

2. Factor analysis and AIC;Psychometrika,1987

3. A latent class segmentation analysis of e-shoppers;Journal of Business Research,2004

4. A taxonomy of differences between consumers for market segmentation;International Journal of Research in Marketing,2002

5. A class if its own: Latent class segmentation and its implications for qualitative research;Qualitative Market Research: An International Journal,2003

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3