Author:
Ragi Regiane,da Nobrega Rafael V.T.,Romero Murilo A.
Abstract
PurposeThe purpose of this paper is to develop an efficient numerical algorithm for the self‐consistent solution of Schrodinger and Poisson equations in one‐dimensional systems. The goal is to compute the charge‐control and capacitance‐voltage characteristics of quantum wire transistors.Design/methodology/approachThe paper presents a numerical formulation employing a non‐uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrödinger equation through the split‐operator method while a relaxation method in the FTCS scheme (“Forward Time Centered Space”) is used to solve the two‐dimensional Poisson equation.FindingsThe numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge‐control characteristics and the capacitance‐voltage relationship for a split‐gate quantum wire device.Originality/valueThe paper helps to fulfill the need for C‐V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two‐dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one‐dimensional quantization case, significantly diminishing running time.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A fractional-order equivalent model for characterizing the interelectrode capacitance of MOSFETs;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2022-03-24