A fractional-order equivalent model for characterizing the interelectrode capacitance of MOSFETs

Author:

Huang Yi,Chen Xi

Abstract

Purpose This paper aims to characterize the relationship between the interelectrode capacitance (C) of metal-oxide-semiconductor field-effect transistors (MOSFETs) and the applied bias voltage (V) by a fractional-order equivalent model. Design/methodology/approach A Riemann–Liouville-type fractional-order equivalent model is proposed for the CV characteristic of MOSFETs, which is based on the mathematical relationship between fractional calculus and the semiconductor physical model for the interelectrode capacitance of metal oxide semiconductor structure. The CV characteristic data of an N-channel MOSFET are obtained by Silvaco TCAD simulation. A differential evolution-based offline scheme is exploited for the parameter identification of the proposed model. Findings According to the results of theoretical analysis, mathematical derivation, simulation and comparison, this paper illustrates that, along with the variation of bias voltage applied, the interelectrode capacitance (C) of MOSFETs performs a fractional-order characteristic. Originality/value This work uncovers the fractional-order characteristic of MOSFETs’ interelectrode capacitance. By the proposed model, the influence of doping concentration on the gate leakage parasitic capacitance of MOSFETs can be revealed. In the pre-defined doping concentration range, the relative error of the proposed model is less than 5% for the description of CV characteristics of metal-oxide-semiconductor field-effect transistors (MOSFETs). Compared to some existing models, the proposed model has advantages in both model accuracy and model complexity, and the variation of model parameters can directly reflect the relationship between the characteristics of MOSFETs and the doping concentration of materials. Accordingly, the proposed model can be used for the microcosmic mechanism analysis of MOSFETs. The results of the analysis produce evidence for the widespread existence of fractional-order characteristics in the physical world.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference41 articles.

1. Revisiting the time-domain and frequency-domain definitions of capacitance;IEEE Transactions on Electron Devices,2021

2. A review of switching oscillations of wide bandgap semiconductor devices;IEEE Transactions on Power Electronics,2020

3. Fractional techniques to characterize non-solid aluminum electrolytic capacitors for power electronic applications;Nonlinear Dynamics,2019

4. The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET;IEEE Transactions on Electron Devices,2014

5. More accurate miller capacitor modeling for SiC switching characteristic prediction in high frequency applications,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3