Author:
Song Zhicheng,Li Xiang,Yang Xiaolong,Li Yao,Wang Linkang,Wu Hongtao
Abstract
Purpose
This paper aims to improve the kinematic modeling accuracy of a spatial three-degrees-of-freedom compliant micro-motion parallel mechanism by proposing a modified modeling method based on the structural matrix method (SMM).
Design/methodology/approach
This paper analyzes the problem that the torsional compliance equation of the circular notched hinge is no longer applicable because it is subject to bilateral restrained torsion. The torsional compliance equation is modified by introducing the relative length coefficient. The input coupling effect, which is often neglected, is considered in kinematic modeling. The symbolic expression of the input coupling matrix is obtained. Theory, simulation and experimentation are presented to show the validity of the proposed kinematic model.
Findings
The results show that the proposed kinematics model can improve the modeling accuracy by comparing the theoretical, finite element method (FEM) and experimental method.
Originality/value
This work provides a feasible scheme for CMPM kinematics modeling. It can be better applied to the optimization design based on the kinematic model in the future.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献