Analysis, optimization and prototyping of a parallel RCM mechanism of a surgical robot for craniotomy surgery

Author:

Dehghani Mohammadreza,Mohammadi Moghadam Majid,Torabi Pourya

Abstract

Purpose Removing the bone flap is a compulsory step in open skull surgeries and is very cumbersome and time-consuming. Exerting large forces during the milling and cutting of the skull renders the surgeon exhausted and consequently increases probable errors in further task of manipulating the sensitive brain tissue. This paper aims to present the development of a robotic system capable of perforating and cutting the required bone flap without restraining the surgeon. Design/methodology/approach For the purpose of optimization, the target workspace is estimated by 3D modeling of the sample skull and bone flaps of targeted surgeries. The optimization considers kinematic performance matrices and the extracted workspace requirements by assigning scores to each possible design and finally selects the design with highest score. Findings The design utilizes a parallel remote center of motion mechanism. Coordinating the remote center of motion (RCM) of the mechanism with the center of a sphere which circumscribes the skull, the milling tool is always nearly perpendicular to the skull bone. The paper presents the concept design, optimization criteria and finally the optimal design of the robot and the fabricated prototype. Tests indicate that the prototype is able to sweep the target workspace and to exert the required forces for bone milling. Originality value The workspace requirements of the craniotomy/craniectomy surgeries are investigated and converted into one quantitative target workspace. An optimized design for a surgical robot is developed which satisfies the workspace requirements of the targeted surgeries.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference26 articles.

1. Workspace analysis of a parallel manipulator with one redundant DOF for skull-base surgery,2001

2. Identification of milling parameters for manual cutting of bicortical bone structures;Computer Aided Surgery,2003

3. Robot‐and computer‐assisted craniotomy: resection planning, implant modelling and robot safety;The International Journal of Medical Robotics and Computer Assisted Surgery,2006

4. Medical robots: current systems and research directions;Journal of Robotics,2012

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3