Real-time PID control of a novel RCM mechanism designed and manufactured for use in laparoscopic surgery

Author:

Aksungur Serhat,Aydin Muhammet,Yakut Oğuz

Abstract

Purpose The purpose of this study is to design and manufacture a new remote center of motion (RCM) mechanism for use in laparoscopic surgical operations. In addition, obtaining the forward and inverse kinematic equations of the RCM mechanism and performing real-time position control with the Proportional–Integral–Derivative (PID) control method. Design/methodology/approach At the design stage, it is benefited from similar triangle rule. To obtain the kinematic equations in a simple way and facilitate control, two-fold displacement ratio is provided between the limbs where linear motion occurs. The rotation and displacement amounts required to move at the RCM point have been calculated by using the kinematic equations of the mechanism. Limb dimensions and motion limits are determined in the manner to avoid singularities and collisions. The x, y and z coordinates of the end effector have been defined as the reference point. Control of the mechanism was provided by PID control. To generate the user interface and control algorithm, MATLAB/Simulink real-time toolbox has been used. Four reference points were determined, control was performed and position error values were examined. MF634 Humusoft data acquisition card has been preferred to collect data from encoders. Findings A novel RCM mechanism has been designed and manufactured. Kinematic equations of this mechanism have been obtained. Position control of the cannula tip has been performed using PID control method for four different reference points. After settlement, maximum position error has been observed as 0.45 mm. Practical implications Structure of the designed mechanism is quite simple. Thus, costs are quite low. The operation area of the operator is widened by hanging the mechanism from the ceiling, so operational capability of health personnel is increasing. It helps to decrease the operation time and increase the success of the operation. Originality/value With this study, it is aimed to contribute to the literature by designing a new RCM mechanism. The rotation of the mechanism around the RCM point is provided by only one rotary motor, and the displacement of the RCM point in the vertical axis is provided by only one linear motor. The mechanism is also a surgical robot. The designed system is suitable for use in robot-assisted laparoscopic surgery in terms of maneuverability.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference29 articles.

1. PID control of a robot which developed to use in laparoscopic surgery,2017

2. Fuzzy control of laparoscopic surgical robot designed for use in minimally invasive surgery;International Journal of Applied Mathematics, Electronics and Computers,2018

3. Real-time control of triglide robot using sliding mode control method;Industrial Robot: An International Journal,2018

4. Dionis: a novel remote-center-of-motion parallel manipulator for minimally invasive surgery;Applied Bionics and Biomechanics,2011

5. Analysis, optimization and prototyping of a parallel RCM mechanism of a surgical robot for craniotomy surgery;Industrial Robot: An International Journal,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3