A paper-text perspective

Author:

Wang Hao,Deng Sanhong

Abstract

Purpose In the era of Big Data, network digital resources are growing rapidly, especially the short-text resources, such as tweets, comments, messages and so on, are showing a vigorous vitality. This study aims to compare the categories discriminative capacity (CDC) of Chinese language fragments with different granularities and to explore and verify feasibility, rationality and effectiveness of the low-granularity feature, such as Chinese characters in Chinese short-text classification (CSTC). Design/methodology/approach This study takes discipline classification of journal articles from CSSCI as a simulation environment. On the basis of sorting out the distribution rules of classification features with various granularities, including keywords, terms and characters, the classification effects accessed by the SVM algorithm are comprehensively compared and evaluated from three angles of using the same experiment samples, testing before and after feature optimization, and introducing external data. Findings The granularity of a classification feature has an important impact on CSTC. In general, the larger the granularity is, the better the classification result is, and vice versa. However, a low-granularity feature is also feasible, and its CDC could be improved by reasonable weight setting, even exceeding a high-granularity feature if synthetically considering classification precision, computational complexity and text coverage. Originality/value This is the first study to propose that Chinese characters are more suitable as descriptive features in CSTC than terms and keywords and to demonstrate that CDC of Chinese character features could be strengthened by mixing frequency and position as weight.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference47 articles.

1. Linguistic techniques to improve the performance of automatic text categorization,2001

2. Feature selection using information gain for improved structural-based alert correlation;PloS One,2016

3. Feature selection for ordinal text classification;Neural Computation,2014

4. Text mining for the vaccine adverse event reporting system: medical text classification using informative feature selection;Journal of the American Medical Informatics Association,2011

5. Using Chi-square statistics to measure similarities for text categorization;Expert Systems with Applications,2011

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3