Prediction of Obstetric Patient Flow and Horizontal Allocation of Medical Resources Based on Time Series Analysis

Author:

Li Hua,Mu Dongmei,Wang Ping,Li Yin,Wang Dongxuan

Abstract

Objective: Given the ever-changing flow of obstetric patients in the hospital, how the government and hospital management plan and allocate medical resources has become an important problem that needs to be urgently solved. In this study a prediction method for calculating the monthly and daily flow of patients based on time series is proposed to provide decision support for government and hospital management.Methods: The historical patient flow data from the Department of Obstetrics and Gynecology of the First Hospital of Jilin University, China, from January 1, 2018, to February 29, 2020, were used as the training set. Seven models such as XGBoost, SVM, RF, and NNAR were used to predict the daily patient flow in the next 14 days. The HoltWinters model is then used to predict the monthly flow of patients over the next year.Results: The results of this analysis and prediction model showed that the obstetric inpatient flow was not a purely random process, and that patient flow was not only accompanied by the random patient flow but also showed a trend change and seasonal change rule. ACF,PACF,Ljung_box, and residual histogram were then used to verify the accuracy of the prediction model, and the results show that the Holtwiners model was optimal. R2, MAPE, and other indicators were used to measure the accuracy of the 14 day prediction model, and the results showed that HoltWinters and STL prediction models achieved high accuracy.Conclusion: In this paper, the time series model was used to analyze the trend and seasonal changes of obstetric patient flow and predict the patient flow in the next 14 days and 12 months. On this basis, combined with the trend and seasonal changes of obstetric patient flow, a more reasonable and fair horizontal allocation scheme of medical resources is proposed, combined with the prediction of patient flow.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3