Web News Data Extraction Technology Based on Text Keywords

Author:

Zhang Kun1ORCID

Affiliation:

1. School of Communication, Xi’an Peihua University, Xi’an City, China

Abstract

In order to shorten the time for users to query news on the Internet, this paper studies and designs a network news data extraction technology, which can obtain the main news information through the extraction of news text keywords. Firstly, the TF-IDF keyword extraction algorithm, TextRank keyword extraction algorithm, and LDA keyword extraction algorithm are analyzed to understand the keyword extraction process, and the TF-IDF algorithm is optimized by Zipf’s law. By introducing the idea of model fusion, five schemes based on waterfall fusion and parallel combination fusion are designed, and the effects of the five schemes are verified by experiments. It is found that the designed extraction technology has a good effect on network news data extraction. News keyword extraction has a great application prospect, which can provide the basis for the research fields of news key phrases, news abstracts, and so on.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3