Influence of laser parameters on the surface morphology of slurry-based Al2O3 parts produced through selective laser melting

Author:

Zhang Kai,Liu Tingting,Liao Wenhe,Zhang Changdong,Yan Yishuai,Du Daozhong

Abstract

Purpose The purpose of this paper is to obtain high-performance ceramics and enrich additive manufacturing of ceramic parts. Also, a new manufacturing technique based on slurry by selective laser melting (SLM) was studied, which has some significant advantages compared to indirect selective laser sintering of ceramic powders. Design/methodology/approach To study the effect of laser parameters on the surface morphology and melting state of pure Al2O3 ceramics, laser power varied between 100 and 200 W and scan speed varied between 60 and 90 mm/s. Findings Experimental results show that Al2O3 slurry melts completely when the laser power is about 200 W and the scanning speed is 90 mm/s. Surface quality cannot be improved effectively by changing the scanning speed. However, surface quality improves when the laser power is 200∼205 W and energy density is 889∼911 J/mm3. Thermocapillary convection was observed during SLM. By changing the temperature gradient, streak convection and flowing Bénard cells were obtained during SLM of Al2O3 slurry. Originality/value It is feasible to produce slurry ceramic parts without binders through SLM. Increasing the laser power is the most effective way to fully melt the ceramics. Complex thermocapillary convection was observed during this new process; it may be used to produce crystals.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference21 articles.

1. Processing of advanced electroceramic components by fused deposition technique;Journal of the European Ceramic Society,2001

2. Integrally cored ceramic mold fabricated by ceramic stereolithography;International Journal of Applied Ceramic Technology,2011

3. Ceramic components manufacturing by selective laser sintering;Applied Surface Science,2007

4. Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures;Physics Procedia,2014

5. Shaping ceramics through indirect selective laser sintering;Rapid Prototyping Journal,2016

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3