Shaping ceramics through indirect selective laser sintering

Author:

Deckers Jan Patrick,Shahzad Khuram,Cardon Ludwig,Rombouts Marleen,Vleugels Jozef,Kruth Jean-Pierre

Abstract

Purpose The purpose of this paper is to compare different powder metallurgy (PM) processes to produce ceramic parts through additive manufacturing (AM). This creates the potential to rapidly shape ceramic parts with an almost unlimited shape freedom. In this paper, alumina (Al2O3) parts are produced, as Al2O3 is currently the most commonly used ceramic material for technical applications. Design/methodology/approach Variants of the following PM route, with indirect selective laser sintering (indirect SLS) as the AM shaping step, are explored to produce ceramic parts: powder synthesis, indirect SLS, binder removal and furnace sintering and alternative densification steps. Findings Freeform-shaped Al2O3 parts with densities up to approximately 90 per cent are obtained. Research limitations/implications The resulting Al2O3 parts contain inter-agglomerate pores. To produce higher-quality ceramic parts through indirect SLS, these pores should be avoided or eliminated. Originality/value The research is innovative in many ways. First, composite powders are produced using different powder production methods, such as temperature-induced phase separation and dispersion polymerization. Second, four different binder materials are investigated: polyamide (nylon-12), polystyrene, polypropylene and a carnauba wax – low-density polyethylene combination. Further, to produce ceramic parts with increased density, the following densification techniques are investigated as additional steps of the PM process: laser remelting, isostatic pressing and infiltration.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference47 articles.

1. Hard metal tooling via SFF of ceramics and powder metallurgy,1999

2. Selective laser sintering of polymer-coated Al2O3/ZrO2/TiC ceramic powder;Transactions of Nonferrous Metals Society of China,2005

3. Polystyrene-coated alumina powder via dispersion polymerization for indirect selective laser sintering applications;Journal of Applied Polymer Science,2013

4. Binder development for indirect SLS of non metallics,2010

5. Direct laser freeform fabrication of high performance metal components;Rapid Prototyping Journal,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3