Advances and challenges in direct additive manufacturing of dense ceramic oxides

Author:

Fan ZhiqiORCID,Tan Qiyang,Kang Chengwei,Huang Han

Abstract

Abstract Ceramic oxides, renowned for their exceptional combination of mechanical, thermal, and chemical properties, are indispensable in numerous crucial applications across diverse engineering fields. However, conventional manufacturing methods frequently grapple with limitations, such as challenges in shaping intricate geometries, extended processing durations, elevated porosity, and substantial shrinkage deformations. Direct additive manufacturing (dAM) technology stands out as a state-of-the-art solution for ceramic oxides production. It facilitates the one-step fabrication of high-performance, intricately designed components characterized by dense structures. Importantly, dAM eliminates the necessity for post-heat treatments, streamlining the manufacturing process and enhancing overall efficiency. This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides, with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques. A thorough investigation is conducted into the shaping quality, microstructure, and properties of diverse ceramic oxides produced through dAM. Critical examination is given to key aspects including feedstock preparation, laser-material coupling, formation and control of defects, in-situ monitoring and simulation. This paper concludes by outlining future trends and potential breakthrough directions, taking into account current gaps in this rapidly evolving field.

Funder

Postdoctoral Research Project of Shaanxi Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3