Abstract
Purpose
The purpose of this study is to develop active package films using clove essential oil (CEO) and biodegradable polybutylene adipate terephthalate (PBAT) with varying weight percentages of SiO2 nanoparticles (SiO2NPs), as well as to investigate the mechanical, barrier, thermal, optical, surface hydrophobicity and antibacterial properties of PBAT incorporated with CEO as a natural plasticizer and SiO2NPs as a nanofiller.
Design/methodology/approach
PBAT-based bio-composites films were fabricated with different weight percentage of CEO (5% and 10%) and nanosilica (1% and 3%) by solution casting method. The packaging performance was investigated using universal testing machine, spectrophotometer, contact angle goniometer, oxygen and water vapour permeability tester. The antibacterial properties of PBAT-based nanocomposite and composite films were investigated using the ISO 22196 by zone of inhibition method.
Findings
The mechanical results exhibited that the addition of 10 Wt.% of CEO into PBAT increases the percentage of elongation, whereas, the addition of 3 Wt.% of SiO2NPs increases the tensile strength of the composite film. The presence of CEO in PBAT exhibits a good barrier against water permeability and SiO2NPs in the PBAT matrix help to reduce the opacity and hydrophobicity. The antimicrobial and thermal results revealed that the inclusion of 10 Wt.% of CEO and 3 Wt.% of SiO2NPs into PBAT polymer improved antimicrobial and thermal resistance properties.
Originality/value
A new PBAT-based active packaging film developed using natural plasticizers CEO and nanofiller SiO2 with a wide range of applications in the active food packaging applications. Moreover, they have good surface hydrophobicity, thermal stability, mechanical, barrier and antibacterial properties.
Subject
Materials Chemistry,Surfaces, Coatings and Films
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献