Author:
Shahriari Sayyed Ali Akbar,Mohammadi Mohammad,Raoofat Mahdi
Abstract
Purpose
The purpose of this study is to propose a control scheme based on state estimation algorithm to improve zero or low-voltage ride-through capability of permanent magnet synchronous generator (PMSG) wind turbine.
Design/methodology/approach
Based on the updated grid codes, during and after faults, it is necessary to ensure wind energy generation in the network. PMSG is a type of wind energy technology that is growing rapidly in the network. The control scheme based on extended Kalman filter (EKF) is proposed to improve the low voltage ride-through (LVRT) capability of the PMSG. In the control scheme, because the state estimation algorithm is applied, the requirement of DC link voltage measurement device and generator speed sensor is removed. Furthermore, by applying this technique, the extent of possible noise on measurement tools is reduced.
Findings
In the proposed control scheme, zero or low-voltage ride-through capability of PMSG is enhanced. Furthermore, the requirement of DC link voltage measurement device and generator speed sensor is removed and the amount of possible noise on the measurement tools is minimized. To evaluate the ability of the proposed method, four different cases, including short and long duration short circuit fault close to PMSG in the presence and absence of measurement noise are studied. The results confirm the superiority of the proposed method.
Originality/value
This study introduces EKF to enhance LVRT capability of a PMSG wind turbine.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献