A Review of State Estimation Techniques for Grid-Connected PMSG-Based Wind Turbine Systems

Author:

Mayilsamy GaneshORCID,Palanimuthu KumarasamyORCID,Venkateswaran RaghulORCID,Antonysamy Ruban PeriyanayagamORCID,Lee Seong RyongORCID,Song DongranORCID,Joo Young HoonORCID

Abstract

The power system network grows yearly with a large number of nonlinear power generation systems. In this scenario, accurate modeling, control, and monitoring of interface systems and energy conversion systems are critical to the reliability and performance of the overall power system. In this trend, the permanent magnet synchronous generator (PMSG)-based wind turbine systems (WTS) equipped with a full-rated converter significantly contribute to the development of new and renewable energy generation. The various components and control systems involved in operating these systems introduce higher complexity, uncertainty, and highly nonlinear control challenges. To deal with this, state estimation remains an ideal and reliable procedure in the relevant control of the entire WTS. In essence, state estimation can be useful in control procedures, such as low-voltage ride-through operation, active power regulation, stator fault diagnosis, maximum power point tracking, and sensor faults, as it reduces the effects of noise and reveals all hidden variables. However, many advanced studies on state estimation of PMSG-based WTS deal with real-time information of operating variables through filters and observers, analysis, and summary of these strategies are still lacking. Therefore, this article aims to present a review of state-of-the-art estimation methods that facilitate advances in wind energy technology, recent power generation trends, and challenges in nonlinear modeling. This review article enables readers to understand the current trends in state estimation methods and related issues of designing control, filtering, and state observers. Finally, the conclusion of the review demonstrates the direction of future research.

Funder

Basic Science Research Program

International Cooperation Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3