A fast workpiece detection method based on multi-feature fused SSD

Author:

Shi Guoyuan,Zhang Yingjie,Zeng Manni

Abstract

PurposeWorkpiece sorting is a key link in industrial production lines. The vision-based workpiece sorting system is non-contact and widely applicable. The detection and recognition of workpieces are the key technologies of the workpiece sorting system. To introduce deep learning algorithms into workpiece detection and improve detection accuracy, this paper aims to propose a workpiece detection algorithm based on the single-shot multi-box detector (SSD).Design/methodology/approachPropose a multi-feature fused SSD network for fast workpiece detection. First, the multi-view CAD rendering images of the workpiece are used as deep learning data sets. Second, the visual geometry group network was trained for workpiece recognition to identify the category of the workpiece. Third, this study designs a multi-level feature fusion method to improve the detection accuracy of SSD (especially for small objects); specifically, a feature fusion module is added, which uses “element-wise sum” and “concatenation operation” to combine the information of shallow features and deep features.FindingsExperimental results show that the actual workpiece detection accuracy of the method can reach 96% and the speed can reach 41 frames per second. Compared with the original SSD, the method improves the accuracy by 7% and improves the detection performance of small objects.Originality/valueThis paper innovatively introduces the SSD detection algorithm into workpiece detection in industrial scenarios and improves it. A feature fusion module has been added to combine the information of shallow features and deep features. The multi-feature fused SSD network proves the feasibility and practicality of introducing deep learning algorithms into workpiece sorting.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference37 articles.

1. Reflective workpiece detection and localization for flexible robotic cells;Robotics and Computer-Integrated Manufacturing,2017

2. Feature-fused SSD: fast detection for small objects,2017

3. Chen, D.Y., et al. (2003), “On visual similarity based 3D model retrieval”, Paper presented at the Computer Graphics Forum.

4. Histograms of oriented gradients for human detection,2005

5. Computer vision system for workpiece referencing in three-axis machining centers;The International Journal of Advanced Manufacturing Technology,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3