Pipeline Multitype Artifact Recognition Method Based on Inception_Resnet _V2 Structure Improving SSD Network

Author:

Zheng Yi1ORCID

Affiliation:

1. Chongqing Industry Polytechnic College, Yubei, Chongqing 401120, China

Abstract

A fast recognition method for assembly line workpieces based on an improved SSD model is proposed to address the problems of low detection accuracy and lack of real-time performance when existing target detection models face small-scale targets and stacked targets. Based on the SSD network, the optimized Inception_Resnet _V2 structure is used to improve its feature extraction layer and enhance the extraction capability of the network for small-scale targets. The repulsion loss (Reploss) is used to optimize the loss function of the SSD network to solve the problem of stacked workpieces. The issue of difficult detection is improved. The robustness of the algorithm is enhanced. The experimental results show that the improved SSD target detection method improves the detection accuracy by 9.69% over the traditional SSD map. The detection speed meets the real-time requirements, which is a better balance of detection real time and accuracy requirements. The algorithm can recognize small-scale and stacked targets with higher category confidence, better algorithm robustness, and better recognition performance compared to the same type of target detection algorithms.

Publisher

Hindawi Limited

Subject

General Computer Science

Reference22 articles.

1. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

2. Workpiece intelligent identification and positioning system based on binocular machine vision;Y. Li

3. Vision-based Robot Manipulator for Industrial Applications

4. Zenrobotics recycler–robotic sorting using machine learning;T. J. Lukka

5. An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3