Effect of Au-Sn IMCs’ formation and morphologies on shear properties of laser reflowed micro-solder joints

Author:

Liu Wei,An Rong,Wang Chunqing,Tian Yanhong

Abstract

Purpose – The purpose of this paper is to investigate the effect of typical morphologies of Au-Sn IMCs (intermetallic compounds) at the interfaces of solder and pads on shear properties of laser reflowed micro-solder joints. Design/methodology/approach – Sn-2.0Ag-0.75Cu-3.0Bi (SnAgCuBi) solder balls (120 μm in diameter), pads with 0.1, 0.5, 0.9 or 4.0 μm thickness of Au surface finish, and different laser input energies were utilized to fabricate micro-solder joints with Au-Sn IMCs having different typical morphologies. The joints were performed by a shear test through a DAGE bond test system. Fracture surfaces of the joints were analyzed by scanning electron microscopy and energy-dispersive X-ray spectrometry to identify fracture modes and locations. Findings – Morphologies of Au-Sn IMCs would affect shear properties of the joints remarkably. When needle-like AuSn4 IMCs formed at the interfaces of solder and pads, almost entire surfaces presented the manner of ductile fracture. Moreover, shear forces of this kind of solder joints were higher than those of joints without Au-Sn IMCs or with a nearly continuous/continuous Au-Sn IMCs layer. The reason was that the shear performance of the solder joints with needle-like AuSn4 IMCs was enhanced by an interlocking effect between solder and needle-like AuSn4 IMCs. As a nearly continuous or continuous Au-Sn IMCs layer formed, the fracture surfaces presented more character of brittle than ductile fracture. However, if an Au layer still remained under Au-Sn IMCs, the shear performance of the joints would be enhanced. Originality/value – The results in this study can be used to optimize microstructures and shear properties of laser reflowed micro-solder joints.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3