Implementation of phosphor sedimentation to reduce thermal instability issue affecting white LED luminescence

Author:

Peng Hui Yuen,Yam Fong Kwong

Abstract

Purpose In general, lighting application, white light emitting diode (LED) usually exposed to an extreme operating temperature of above 90°C. It is well-known that luminous efficacy and spectral characteristic of white LED are dependent on the temperature, causing thermal effects on luminous efficacy and color shift of white LED become a critical application checkpoint to be addressed by white LED manufactures. Thus, the purpose of this paper is to minimize the thermal stability issue affecting white LED luminescence during operation by introducing phosphor sedimentation process. Design/methodology/approach The LED samples were assembled and sent for centrifugation with 0, 5 and 10 revolutions per second (rps), respectively, during phosphor sedimentation process. Luminescence properties of these LED samples were then characterized at a varying temperature to investigate the effect of phosphor sedimentation on the luminescence stability of LED samples. The LED samples were also cross-sectioned and analyzed to understand the phosphor sedimentation mechanism. Computational fluid dynamics (CFD) was applied to study the temperature distribution of the non-phosphor sediment (NPS) and phosphor sediment (PS) LED during operation to validate the hypotheses based on experimental data. Findings Experimental results show that the luminous intensity of PS LED samples degrades less significant at high temperature. The experimental results also show that the color coordinate for PS LED samples is more stable and is less blue-shifted than NPS LED samples as the temperature increased. These are because the heat generated by phosphor particles during operation can be dissipated effectively throughout a high thermal conductivity substrate after phosphor sedimentation. Thus, the phosphor temperature of PS LED is lower than NPS LED during operation as validated with the thermal simulation. Practical implications The study of this paper is applicable as a reference for industries who intend to resolve the thermal stability of white LED during operation. The luminescence properties changes as a function of the temperature study in this paper can be used to predict the application performances of white LED accurately. Apart from that, the analysis method of temperature distribution using CFD simulations can be extended by other CFD users in the future. Originality/value Implementation of phosphor sedimentation to reduce thermal instability issue of white LED has yet to be reported on previous studies. Most literature just studied the thermal instability issue of either assembled LED or raw material, without suggesting any solution to tackle the issue.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Temperature dependence of Ce: YAG single-crystal phosphors for high-brightness white LEDs/LDs;Materials Research Express,2015

2. Temperature dependent emission of Strontium-Barium orthosilicate (Sr2-x Bax)SiO4: Eu2+ phosphors for high-power white light-emitting diodes;Journal of the Electrochemical Society,2011

3. A novel randomly textured phosphor structure for highly efficient white light-emitting diodes;Nanoscale Research Letters,2012

4. Effect of temperature on the luminous properties of white-light-emitting diodes with red and green phosphors;New Physics: Sae Mulli,2013

5. Cornelius, S. (2017), “LED luminaire reliability: impact of color shift”, available at: https://energy.gov/sites/prod/files/2017/04/f34/lsrc_colorshift_apr2017.pdf (accessed 13 September 2018).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3