Adaptive hybrid arbiter design for real-time traffic-aware scheduling

Author:

Khan Afshan Amin,Mir Roohie Naaz,Din Najeeb-Ud

Abstract

Purpose This work focused on a basic building block of an allocation unit that carries out the critical job of deciding between the conflicting requests, i.e. an arbiter unit. The purpose of this work is to implement an improved hybrid arbiter while harnessing the basic advantages of a matrix arbiter. Design/methodology/approach The basic approach of the design methodology involves the extraction of traffic information from buffer signals of each port. As the traffic arrives in the buffer of respective ports, information from these buffers acts as a source of differentiation between the ports receiving low traffic rates and ports receiving high traffic rates. A logic circuit is devised that enables an arbiter to dynamically assign priorities to different ports based on the information from buffers. For implementation and verification of the proposed design, a two-stage approach was used. Stage I comprises comparing the proposed arbiter with other arbiters in the literature using Vivado integrated design environment platform. Stage II demonstrates the implementation of the proposed design in Cadence design environment for application-specific integrated chip level implementation. By using such a strategy, this study aims to have a special focus on the feasibility of the design for very large-scale integration implementation. Findings According to the simulation results, the proposed hybrid arbiter maintains the advantage of a basic matrix arbiter and also possesses the additional feature of fault-tolerant traffic awareness. These features for a hybrid arbiter are achieved with a 19% increase in throughput, a 1.5% decrease in delay and a 19% area increase in comparison to a conventional matrix arbiter. Originality/value This paper proposes a traffic-aware mechanism that increases the throughput of an arbiter unit with some area trade-off. The key feature of this hybrid arbiter is that it can assign priorities to the requesting ports based upon the real-time traffic requirements of each port. As a result of this, the arbiter is dynamically able to make arbitration decisions. Now because buffer information is valuable in winning the priority, the presence of a fault-tolerant policy ensures that none of the priority is assigned falsely to a requesting port. By this, wastage of arbitration cycles is avoided and an increase in throughput is also achieved.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference57 articles.

1. Predator: a predictable sdram memory controller,2007

2. Real-time scheduling using credit-controlled static-priority arbitration,2008

3. Fault tolerant scheduling of precedence task graphs on heterogeneous platforms,2008

4. Lab-on-a-chip and other miniaturised analytical instruments;Sensor Review,2016

5. Reducing the number of passing links in the 2d-noc for performance and reliability improvement;World Journal of Engineering,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Invasive Hardware Trojans Modeling and Insertion: A Formal Verification Approach;Journal of Electronic Testing;2024-02

2. Hardware Security Analysis of Arbiters: Trojan Modeling and Formal Verification;2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC);2023-10-16

3. A Low-Latency Fair-Arbiter Architecture for Network-on-Chip Switches;Applied Sciences;2022-12-06

4. Design and implementation of network‐on‐chip router using multi‐priority based iterative round‐robin matching with slip;Transactions on Emerging Telecommunications Technologies;2022-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3