Effects of ice geometry on airfoil performance using neural networks prediction

Author:

Cao Yihua,Yuan Kungang,Li Guozhi

Abstract

PurposeThe purpose of this paper is to describe a methodology for predicting the effects of glaze ice geometry on airfoil aerodynamic coefficients by using neural network (NN) prediction. Effects of icing on angle of attack stall are also discussed.Design/methodology/approachThe typical glaze ice geometry covers ice horn leading‐edge radius, ice height, and ice horn position on airfoil surface. By using artificial NN technique, several NNs are developed to study the correlations between ice geometry parameters and airfoil aerodynamic coefficients. Effects of ice geometry on airfoil hinge moment coefficient are also obtained to predict the angle of attack stall.FindingsNN prediction is feasible and effective to study the effects of ice geometry on airfoil performance. The ice horn location and height, which have a more evident and serious effect on airfoil performance than ice horn leading‐edge radius, are inversely proportional to the maximum lift coefficient. Ice accretions on the after‐location of the upper surface of the airfoil leading edges have the most critical effects on the airfoil performance degradation. The catastrophe of hinge moment and unstable hinge moment coefficient can be used to predict the stall effectively.Practical implicationsSince the simulation results of NNs are shown to have high coherence with the tunnel test data, it can be further used to predict coefficients at non‐experimental conditions.Originality/valueThe simulation method by using NNs here can lay the foundation of the further research about the airfoil performance in different ice cloud conditions through predicting the relations between the ice cloud conditions and ice geometry.

Publisher

Emerald

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3